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On Computer Viral Infection and the Effect of Immunization

1. INTRODUCTION

In recent years, computer viruses, a type of deliberate fault, have increased dramatically i

ber, and they have also begun to appear in new and more complex forms [9], [10], [11]

result, the task of detection and prevention of viruses has become increasingly difficult.

pounding an already difficult problem is the increased connectivity of modern computer sys

This exacerbates the problem because viruses and worms can now use networks as a new

for propagation. They can sweep quickly through thousands of hosts, an effect that is fa

damaging than what would occur in a more traditional, stand-alone computing environmen

Traditional anti-virus techniques focus typically on detection of the static signature

viruses. While these techniques are somewhat effective in their own right, they do not addr

dynamic nature of a virus infection within the context of the underlying system. In a com

network, a virus can propagate through the network quickly, and it might infect and da

many, perhaps all, machines before the severity of the situation is recognized.

A valuable mechanism for tolerating this type of deliberate fault, would be to detect the

ence of an infection in a network at an early stage and to have the network react to the a

real time to mitigate the damage. A number of challenges exist in developing such a sc

First, a thorough understanding of the network-wide characteristics of viral infections is ne

If such characteristics were known, mechanisms might be developed to detect an on-going

area infection. Perhaps of greater importance is the prospect of developing defense mec

that would operate in real time and on a network-wide basis. Clearly the effect of factors s

the rate and pattern of infection, the underlying network topology, and stochastic variations

network must be well understood before a comprehensive view of infection could be deve

Second, techniques for acquiring a global perspective of the infection and real-time controls

network are essential for thwarting viral infections. This implies the need for real-time, re

network monitoring and management, a topic of much ongoing research [1], [3], [6].

In this paper, we report on a study of network viral infection. The study was conducted

simulation and examined several key characteristics of infection, including the rate of infe

through the network and the rate at which individual nodes are re-infected during an attac

key part of the study, we have examined the impact of immunization on infection, a difficult 
Page 1
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tical problem in network management. Clearly, immunization can protect a system from

effects of a known virus, but in a large network it is essentially impossible to be sure that 

nodes are properly immunized. This raises the question of what the effect might be of imm

tion that is only effective on certain nodes. Dealing with this question might also allow insigh

into the conscious use of selective immunization where the task of immunizing a comple

work is infeasible.

The paper is organized as follows. In section 2, we review the basic concepts of virus

some of the current anti-virus work. Section 3 discusses the factors influencing compute

infection and the factors used in this study. We discuss the limitations of analytic modeling i

tion 4, then present the design and framework for our experiments in section 5. In section

7, we present our experimental results and explore the issue of immunization, both rando

selective. We discuss the open issues in virus research and summarize the paper in sectio

2. RELATED  WORK

Viruses and worms are self-replicating programs that have the goal of damaging their ho

arranging for copies of themselves to propagate to new hosts [2]. For simplicity we use th

virus throughout the rest of this paper to mean an infectious agent that can infect compu

which it has access. 

Viruses and worms have been studied extensively by both the research and the app

communities. Cohen’s work in the 1980’s formed the theoretical basis for the field [2]. I

ensuing decade, many significant scientific and technological advances have been mad

battle against computer viruses.

The majority of the current anti-virus techniques employ static scanning methods in 

programs are scanned in search of a sequence of instructions known as the virus signature. Each

time a new virus is discovered, its signature is added to the database of virus signatu

response to this approach, virus writers have developed more complex and innovative w

write viruses that are capable of evading simple scanning (e.g. polymorphic viruses). Produ

virus protection systems have countered with new scanning methods to cope with the

viruses. This co-evolution, eloquently described by Nachenberg [9], summarizes the last 

years of an arms race between virus writers and the anti-virus industry.

The work on virus protection has produced many useful tools and technologies. Howev
Page 2
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approaches are limited to the individual properties of the virus, such as the signature it carr

types of programs it might infect, and so on. It is not surprising that each time a new

appears, the anti-virus industry finds itself scrambling to produce yet another defense mech

There is an evident lack of study of virus activities in the context of the underlying systems

regard to the many system attributes that might impact the viral infection—few attempts

been made to investigate how fast viruses can spread, the patterns of infection, and how

such as the network topology affect their prevalence, etc.

Kephart, Chess, and White of IBM conducted a study of viral infection based on epide

ogy models [4], [5]. They constructed an analytical model in which they characterized viral i

tion in terms of birth rate (the rate at which machines are infected), death rate (the rate a

machines are cured), and the patterns of transmission of information between computers.

The IBM study was based on a model in which viruses were spread via activities mostl

fined to local interactions. The authors indicate that at the time of the study this was one

more prevalent interaction models where infection takes place when individuals share

because “most individuals exchange most of their software with just a few others and neve

tact the majority of the world’s population [4].” Based on this model, they concluded that 

virus activities were localized, and virus propagation rarely reached the exponential rate ind

by the classical epidemiological models. While their findings are sound and supported by 

empirical evidence, new patterns of interaction and changes in system connectivity sugges

is necessary to reevaluate some of the assumptions and simplifications of the IBM model.

In addition, the epidemiology model used in the IBM study is primarily concerned with

global aspects of the viral propagation. Details of individual infections, such as variatio

infection experienced by different hosts during a virus attack, are, to a large extent, ig

While tracing low-level details of individual infection is an intractable problem in any siz

population, we argue that a study of carefully selected low-level characteristics can be ben

in that it might unveil information useful in establishing effective defense mechanisms—we

show such an example in the selective immunization study in later sections. This type of in

tion cannot be discerned from studying of the global behavior only, and simple analytic mo

is likely to overlook them.

Finally, we note that in the Serrano project at the University of California, San Diego, M

llo and his colleagues are investigating fault tolerance in large networks including the effe
Page 3
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viral infection [8]. However, their work is specially tuned to the study of multicast protocols

the effect on self-propagating attacks. The applicability of the model is therefore limited.

3. FACTORS INFLUENCING  NETWORK  INFECTION

Many factors can influence the way a viral infection progresses, including those from the en

ment and those that are inherent to the infecting agent. The rate of spread of Melissa, for e

depended on how often users read e-mail and what entries they had in their address boo

rate of reading e-mail corresponded to the “processing rate” that the virus could expect a

address book entries defined the topology of the network that the virus could infect.

Before proceeding with any analysis of infection, a precise and complete framework fo

analysis needs to be established. The goal of this framework is to identify the factors tha

ence infection characteristics and enumerate the values that each factor can take. The fac

affect viral infection are in two areas: (1) the underlying target computer system, and (

infection process used by the virus.

3.1. The target system

We assume a target system consisting of a large network of heterogeneous nodes conn

some mechanism that is not necessarily a traditional network link. For example, a node-t

connection for the Melissa virus required that the virus obtain a valid e-mail address for a r

machine and that a mail connection exist between the machines. A node that was mere

nected by an Ethernet to an infected node, in this case, would not necessarily become infe

The factors of interest pertaining to the target system are the following:

• System Topology: The system topology defines the paths that a virus can follow when pr

gating. We note that this does not necessarily mean either a fully-interconnected topol

an infection path along every network link.

Our interest lies in the networks used to support critical infrastructure applications. 

applications employ private networks whose topologies are determined in large meas

the needs of the application [7]. This contrasts considerably with the fully connected,

nature of the Internet. In this study, we chose two network topologies—hierarchical and clus-

tered. By hierarchical me mean a network with a tree like structure in which nodes are

nected to parent and child nodes. This topology is typical of those found in the bankin

financial networks. By clustered we mean a network in which nodes are organized in c
Page 4
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that have high connectivity within clusters and low connectivity between clusters. This t

ogy is typical of many transportation control and energy control networks.

• Node Immunity: The IBM study characterized nodes as being in one of two states—suscepti-

ble and infected. Once an infected node is cured, it immediately enters the susceptible

again. We broaden the state space by bringing in the notion of immunity to represent th

of susceptibility of a node to a particular virus. For example, a Unix host is immune to a

dows virus, and a node infected by a particular virus might not be susceptible to the

virus at a later time because of changes in the environment such as patches, upgra

repair of a flaw that the virus exploited, and so on. Using this notion, a node can be in 

three states—susceptible, infected, and immune.

In the study reported here, for any given model we assume that nodes can be either 

nently immune or either susceptible or infected. We further assume that once a node h

infected, i.e., changed from susceptible to infected, then it remains infected.

• Temporal Effects: The temporal characteristics of the underlying system such as proce

and communication delays are likely to have a significant effect on the propagation of vi

A virus will have to compete with other processes for system resources, and so replicati

propagation might take time that is both significant and variable.

We model the processing time required by a virus to complete the infection of a node as

stant value of one clock tick, and we assume transmission time form one node to ano

instantaneous.

3.2. The infection process

By the infection process we mean the underlying algorithm that the virus uses to propagate

It should be noted that we are not concerned with some of the properties of the infecting

such as the payload, i.e., whatever code or data it carries to permit it to inflict damage on th

Factors of interest regarding the infection process are the following:

• Propagation Selection: The spread of viruses from one node to others is determined b

propagation algorithm of the viral program. It is not necessarily optimal from the virus’ p

of view to infect everything that it can immediately.

In this study, we assume that the virus can choose to infect any subset of the nodes to w

host is connected, and that each copy of the virus makes independent decisions at eac
Page 5
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• Multiple Infections: An infected node need not be protected from subsequent reinfectio

the same virus. If reinfection occurs, a single node might become host to multiple cop

the virus. In this study, we assume that a node can be infected multiple times and concu

by multiple copies of the same virus. 

• Stochastic Effects: The infection process will be affected by non-determinism in the v

itself. A virus will have to make choices both to improve the chances of its infection b

successful and to improve whatever disguises it chooses to use.

3.3. Characteristics studied 

We studied three characteristics of network viral infection. They are: 

• Total infection time.

• Rate of propagation.

• Node reinfection count.

Total infection time is the time taken by the virus to infect the entire network. Knowing 

details of the time for an infection to spread through an entire network is useful in prepa

response. For example, if the expected time were especially long it might be possible to co

normal operations for lengthy periods during an infection. This would make prompt detect

an infection less critical. Moreover, if total infection time were lengthened by certain net

design factors, these could be deliberately introduced.

The generalization of total infection time is the rate of propagation. By rate of propagation we

mean the rate at which nodes become infected over time during an attack expressed as the

of nodes infected at time t (total infection time is the time at which 100% of the nodes 

infected). Rate of propagation is indicative of the nature of the infection. In particular, if a p

of rate changes were observed, it might be possible to use this as part of an infection sig

Similarly, changes in rate might show how timely a response to an attack needs to be depl

for a given virus and a certain type of network an attack is known to be slow at some poi

approach to treatment could exploit this relative “lull” in activity. It might also indicate that s

fraction of the population could expect to be attacked in a relatively late stage (or early sta

the infection so that they could be responsible (or not) for critical functions. Finally, if widesp

immunization is to be attempted during an attack (assuming that a suitable “vaccine” co
Page 6
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synthesized in real time), the preferred approach to distribution of the vaccine would depen

detailed knowledge of the way in which the infection progresses.

The node reinfection count is the number of times a copy of the virus visits a given node i

spective of whether the node has already been infected. In many real-world scenarios (an

model), viruses do not keep track of the hosts that they have infected and so attempt reinfe

already infected nodes. Knowing how many times this occurs allows decisions to be made

prevention and treatment. For example, the utility of merely disinfecting an infected node m

may not be effective, depending upon whether reinfection is likely to happen in a rapid s

sion. Similarly, the rate of reinfection will permit choices to be made about the speed with 

immunization needs to become effective. Immunizing a node once it has been disinfected

be a lengthy process and its utility is a trade-off that is heavily influenced by reinfection ra

final possibility once reinfection counts are known is to use the characteristics of reinfection

single node experiences as part of a local signature of the attack.

4. THE LIMITATIONS  OF ANALYTIC  MODELING

In principle, the characteristics of computer viral infections could be studied using analytic

els, simulation, or a combination of both. Obviously, analytic models are desirable becaus

provide the most comprehensive means to study a problem. However, despite the succes

vious work in analytic modeling, the combination of complex network topologies, sophistic

infection strategies, and the level of details that we wish to model makes the type of analyti

eling that has been reported in the literature intractable.

As an example of the difficulties that arise with attempts to build analytic models, consid

issue of modeling the probability of infection for a given node in the network. To make the a

sis tractable, it has been assumed in some analytic models that this probability is the sam

nodes and that it is constant in time. In fact, neither of these assumptions holds.

The probability that a node becomes infected is not the same for every node becaus

function of the node’s connectivity and of the infection characteristics of the viral program. 

larly, the probability that a node becomes infected is not fixed in time because, as more an

nodes become infected, the probability of an un-infected node becoming infected increas

stochastic nature of both the network and the infection process is likely to render consid

variations in this probability for different nodes and in different instances of time. Any ana
Page 7
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model that fails to capture the variance in these parameters is likely to be in error.

There is no simplification that can be applied here that will allow a tractable model 

developed nor is it possible to seek a steady-state solution since by definition, no mea

steady state exists. An approach that might be able to capture the complexity of the sys

interest and that might be feasible in this case is Markov analysis. We are pursuing such m

an ongoing study. The study reported here was undertaken with simulation.

5. EXPERIMENTAL  DESIGN

5.1. Simulation environment

Our experiments have been conducted using a special-purpose simulation environment

capable of simulating thousands of computing nodes with any desired network communic

topology and any viral infection process. The network topology that is used in a simulation i

by the system from a file that contains a description of all the nodes in the network and 

inter-node connections.

The file that describes the desired network is synthesized from a high-level specificat

the topology so as to permit rapid generation of different instances of the same type of to

and instances of different topologies. This permits handcrafting of detailed requirements 

creation of a specific network topology of interest.

A virtual time mechanism is implemented to keep track of network time during simula

The system simulates infection decisions and transmission activity for each copy of the vi

each time tick and monitors the state of the infection as virtual time passes. Relevant 

recorded on each time tick and simulation stops when some prescribed state is reached, su

nodes are infected.

5.2. System models

A 1,000-node instance for each of the two network topologies (hierarchic and clustered) wa

for testing. For the hierarchic model, a single root node and a connectivity fan out of at m

from each node to its children was used. For the cluster model, 36 clusters with an average

27 nodes were sparsely connected. 

Two viral infection models were analyzed: single fan out and multiple fan out. By infection

fan out we mean the number of copies that a single copy of the virus can generate on nod

nected to the host upon which it is executing. In the single fan out infection model, a virus s
Page 8
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only one neighboring node to infect (i.e., the fan out of the virus is one). In this case, new

tions occur one at a time for each copy of the virus and only one copy of the virus is ever re

ing actively in the system.

The single fan out infection model represents the slowest rate at which an active virus

spread and so we refer to it as the baseline infection model. This model is perhaps simplistic b

still a possible infection model in practice. For example, a virus trying to disguise its pre

might very well implement an infection model much like this, endeavoring to propagate u

served in the network at a slow speed so as to detonate a payload on all the nodes in the

at the same time. It appears that the resources consumed by large numbers of copies of a

a single node is often the first sign that an infection is underway, and so keeping this factor

control is an obvious strategy that a stealthy virus would employ.

In the multiple fan out infection model, a single copy of the virus is able to infect a ran

number of nodes connected to the infected host (i.e., the fan out of the virus is greater tha

The random number of new infections is chosen by the virus to be between one and a sp

bound. The bound for any particular infection is set between two and the maximum fan o

occurs in the topology (a parameter that is specified in the experiment configuration).

A few assumptions and simplifications were made to ensure feasibility of the experi

First, while multiple copies of the virus can exist concurrently on the same host, we assum

the number of viruses on a single host does not exceed 100. This is to ensure that the exp

proceeds at a reasonable speed, and we believe that 100 is a reasonable value given that m

ies will bog down the host completely. Second, a single starting point was used to relea

virus, and this starting point was randomly chosen in each trial. Finally, the non-determini

the infection process was simulated by repeating simulations using different random seq

for virus decision making.

6. NETWORKS WITHOUT  IMMUNIZATION

In this section we present measurements of viral infections in networks where none of the

was immunized. These experiments provide insight into the characteristics of infection an

also serve as the control sample for the immunization experiments presented in the later se

6.1. Hierarchic topology

Figure 1 shows the distribution obtained from 1,000 runs of the simulation of the total infe
Page 9
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time for a hierarchic network topology with the single fan out infection model. The most im

tant thing to note in this experiment is the tremendous variation that exists in the time to inf

entire network. The fastest total infection time was 31,986 clock ticks and the longes

160,943 clock ticks, a ratio of over 5 to 1. Note that this is solely the effect of stochastic va

resulting from randomness in the infection process—the infection model and all other para

were the same in every simulation trial.

This variation is a result of the sparse connectivity of the hierarchic topology and the

infection probability of the baseline infection model (fan out of one). Depending on the infe

process (e.g., which path the infection follows, etc.), a virus might spend much of its time i

ing and re-infecting a small part of the network, and a considerable amount of time could 

before it manages to venture out to other parts of the network.

Figure 2 shows the rate of propagation averaged across the 1,000 runs of the baseline i

model. Note that the number of infected nodes quickly rose to 80% of the total population, a

infection growth leveled off after that (infecting the remaining 20% of the network took up

bulk of the total infection time). What this means is that, in the late stage of the infection, the

spent much of its time revisiting nodes that had already been infected. This result is con

with the IBM study. It further confirmed that treatment of a viral propagation in its early sta

both important and advantageous in the prevention of further propagation. However, 

implies that a considerable fraction of the nodes in a hierarchic network subject to this t

infection remain uninfected for long periods of time and this might be exploited to allow s

Figure 1: Distribution of total infection time
(hierarchic topology, fan out of 1)

Figure 2: Average rate of propagation
(hierarchic topology, fan out of 1)
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Much more rapid propagations were observed when larger fan outs were specified. Fi

shows the average rate of propagation over the 1,000 runs for infection fan outs of 2 and 

that the difference in the rate of propagation between the higher fan outs and that of the b

case expands several orders of magnitude. In addition, compared with the baseline study,

significantly less variation in the higher fan out experiments. For example, the trials with a fa

of 2 produced a total infection time distribution with a mean of 46.9 clock ticks and a varian

7.79. Less variance was observed with a fan out of 5, which produced a distribution with a

of 23.6 clock ticks and a variance of 5.19.

A larger fan out value corresponds to a higher infection probability. Results of these e

ments showed that when infection probability is high, the sensitivity of the infection dynam

stochastic variation decreases. 

In order to better understand what might be happening during a viral infection, we mea

the number of reinfections that each node experienced during an infection. Figure 4 sho

average number of reinfections for each of the 1,000 nodes in the baseline study. Clearly

population of the nodes were attacked much more heavily than others. For example, node 3

attacked 398 times on average, while node 525, 526, and 527 were attacked 33 times only.

investigation showed little variation in the number of reinfections experienced by the same

in different trials. That is, the nodes that are attacked often in one simulation run are likely

the most often attacked in other simulation runs, provided that the infection model remain

Figure 3: Average rate of infection
(hierarchic topology, fan outs of 2 and 5)

Figure 4: Average reinfection counts
(hierarchic topology, fan out of 1)
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This result is significant because it points out that, for a given topology and a given infe

model, some nodes in the network are more prone to being attacked than others. It is not 

to imagine that these nodes occupy critical locations where a viral infection must revisit in

to propagate to different parts of the system. Note that characteristics such as the reinfect

cannot be easily captured using simple analytic models, as it is the function of many f

including time, the infection model and the underlying topology.

6.2. Cluster topology

A similar set of experiments were conducted for the cluster network topology. Figure 5 sho

distribution of the total infection time for 1,000 runs of the baseline infection model. As wit

hierarchic model, a great deal of variation exists in time to infect the entire network. Fig

shows the rate of propagation across the 1,000 runs with the baseline infection model. The

infection growth in the cluster network is greater than that of the hierarchic case. However, 

ing the last 10% of the network in the cluster case took a significantly larger amount of tim

in the hierarchic network. 

Figure 7 shows the rate of propagation for infection fan outs of 2 and 5. As with the hier

case, a much more rapid propagation resulted from higher values of fan outs. 

Figure 8 shows the average number of reinfections for each of the 1,000 nodes in the

network across the 1,000 runs in the baseline case. The level of variation we observed fr

hierarchic model remains. Note once again how the number of reinfections varied across

Figure 5: Distribution of total infection time
(cluster topology, fan out of 1)
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Figure 6: Average rate of propagation
(cluster topology, fan out of 1)
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i.e., a certain population of the network was attacked much more often during an infection.

7. THE EFFECT OF IMMUNIZATION

The result of our analysis showed that viral infection can propagate at an alarming speed

tems where dynamic detection and remedy are not present. Furthermore, the infection char

tics experienced by individual nodes vary significantly, and that these variations might be in

to the propagation process. It begs the question of whether one could exploit these individu

ations in the design of defense mechanisms, and so in this section we explore the effect o

nity.

Immunization in the computational realm is the ability to prevent a viral program from 

cuting and replicating further to other hosts. There are many reasons a node might be imm

virus. For example, a host running Unix is immune to Windows-based viruses, or a nod

become immunized against a particular virus if the ways that the virus exploits the unde

host are disabled.

It is not our intent to investigate the ways in which immunization can be achieved. R

assuming that immunization techniques exist, our goal is to examine what the most effectiv

egy is for immunization. Clearly, it is often not feasible to immunize the entire network. A m

realistic approach would be to immunize a subset of the population, and so choosing the ap

ate size and membership of that subset becomes an important question.

7.1. Random immunity

The first set of immunization experiments we conducted was with random immunity, i.e., for

Figure 8: Average reinfection counts
(cluster topology, fan out of 1)

Figure 7: Average rate of propagation
(cluster topology, fan outs of 2 and 5)
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trial, a set of nodes was selected at random to be immune. The objective of experimentin

random immunity was to investigate the effect of immunization with respect to the size o

immunized population. In this case it is not important which nodes are immunized, but how 

We performed experiments using the multiple fan out infection model on both the hiera

and cluster topology, with 1%, 5%, and 10% of the population immunized. For each of the

runs, the simulation ran until all of the copies of the virus died (by propagating to immune n

or 100 virtual time ticks were reached. For the 1% immunity case, the immune nodes succe

killed off the virus in 19 out of 1000 runs. As the immunity level increased, the probability of

demic decreased; in the 5% immunity case 147 of the 1000 runs resulted in elimination 

virus, and in the 10% immunity case 227 did not survive due to the virus’ elimination.

For the simulation runs in which the virus survived and successfully propagated, we rec

the rate of propagation for each trial, and computed the average rate of propagation ove

runs (981 for the 1% case, 853 for the 5% case, and 773 for the 10% case). Figure 9 sh

average rate of propagation for the various immunity levels in the hierarchic topology. As s

in Figure 9, there is little difference in the rate of propagation of 1% immunity and that o

immunity. A significant decrease in the rate of propagation occurred as the size of the imm

population rose to 5%, and more so with 10% of the population immunized.

Similar outcomes were observed with the cluster topology. With 1% of the population

domly immunized, the virus was completely eliminated in only 20 runs, but with 5% immune

figure rose to 110 runs and with 10% immune it occurred 248 times. Figure 10 shows the a

rate of propagation for the cluster topology with the various immunity levels in the rema

runs where the virus survived.

The result of these experiments is intuitive. One would expect a lower rate of infec

spread when more members of the population are immunized. The reason that immunizati

forms better in the hierarchic topology is also intuitive: in a hierarchic structure, there is on

path from one node to any other node. It is therefore possible to cut off an entire subtree o

lation if the root node of the subtree was immunized and the infection started from outside 

subtree. In the cluster topology, however, there may exist multiple paths between cluste

similarly between pairs of nodes. Immunization could slow down the spread of infection, b

at the same rate or magnitude as in the hierarchic case.
Page 14
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In practice, random immunity models the scenario in which a large network consists of

pendently administered subdomains. Although the goal is to immunize all the nodes in th

work, many remain vulnerable for various reasons—cost, defective installation, lac

awareness, and so on. In such cases, the nodes which are properly immunized are like

“randomly” distributed through the network. Knowing something of the effect of such incom

immunization is therefore useful.

7.2. Selective immunity

A second set of immunization experiments was designed to investigate the effect of selective

immunity. By selective immunity we mean that the set of immunized nodes is prescribed an

remain the same throughout different trials of the experiment. The objective of this exper

was to investigate how the dynamics of viral propagation were affected by the details of which

nodes are immunized, in addition to how many are immunized.

As seen in the results presented in Section 6, there exist nodes that tend to be muc

heavily attacked than others during a viral infection. This suggests that the locations of

nodes bear more importance for viral propagation, and that a careful investigation of immu

precisely these locations is a worthwhile exercise. In these experiments, we identified the p

tion with the highest reinfection counts as indicated by the control study for each topolog

selected three sets, the nodes with the top 1%, 5%, and 10% rates of infection, as the ta

immunization.

Figure 9: Average rate of propagation
(hierarchic topology, fan out of 2)

Figure 10: Average rate of propagation
(cluster topology, fan out of 2)
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7.2.1. Hierarchic topology

For the hierarchic topology, the immunized population was selected as the ones with the 

reinfection counts seen in the control study. This set also corresponds to the set of nodes 

most number of neighbors in the topology. We performed 1,000 runs with 1%, 5%, and 1

the population immunized; for each run, the infection fan out parameter was set to at most 2

the random immunity case, each simulation run ended when all of the copies of the virus 

100 virtual time ticks were reached. Out of the 1,000 runs with 1% of the population selec

immunized, the virus was completely eliminated in 105 cases (compared to 19 runs in the r

immunity case). Figure 11 shows the average rate of propagation in the remaining 895 ru

1% of the population selectively immunized, plotted with random immunity and no immunit

comparison. Selective immunity performed considerably better than 1% random immunity.

The reason for this difference is that the set of immunized nodes included the root no

two substantial subtrees. In effect, this partitioned the network into several large chunks a

virus outbreak from a single point is capable of infecting a single piece only, not the entir

work. In this aspect, immunizing a low-level node (e.g. one that is a leaf or a near-leaf node

as effective as immunizing high-level nodes. As the size of the immunized population rise

network becomes further fragmented, and the probability of an epidemic developing dimin

In the experiment where we immunized 5% of the population selectively, the virus surviv

only 476 out of 1,000 trials (compared to 853 runs in the random 5% immunity experiment).

more telling is the average rate of propagation in the remaining 524 runs: the virus only in

Figure 11: 1% selective immunization
(hierarchic topology, fan out of 2)

Figure 12: 1% selective immunization
(cluster topology, fan out of 2)
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an average of 13 nodes even when it did survive. This further quantified the conclusion 

some network topologies (e.g., a hierarchic network), it is more important and cost-effec

concentrate on who should be immunized rather than the size of the immunized population.

7.2.2. Cluster topology

A cluster network has very different characteristics than a hierarchic network. For example

is no longer a single path between any pair of nodes, and depending on the connectivity b

clusters, such a topology can be easily transformed to represent either a random gra

strongly connected network topology.

In the cluster network, however, the set of nodes with the highest reinfection counts 

cluster control study is not the same as those with the largest number of links. The reason i

this cluster network, the top 20% of the nodes that were attacked the most often belong pr

nantly to a few clusters. Not surprisingly, these clusters have the most links to other clusters

cluster graph is transformed into another graph where each cluster is represented by a sing

it is then readily apparent that, in the second graph, these “cluster-nodes” with a greater nu

links to other clusters will be attacked more often than others, and that nodes belong to tho

ters are likely to have a higher number of reinfections.

We were interested in examining the effect of immunizing the set of nodes with the h

reinfection rate as well as those with the most important links. For convenience, we refer

former as target set #1 and the latter as target set #2. Intuitively, inter-cluster links are

important than those that connect nodes in the same cluster. To take this factor into consid

when determining target set #2, we used a weighting scheme in a definition of “connectivity

inter-cluster link is weighted ten times as much as an internal link.

Again, we selectively immunized 1%, 5%, and 10% of the total population and perfo

1,000 trials, each until all copies of the virus were eliminated or virtual time 100 was rea

Table 1: Number of epidemics that occurred out of 1,000 runs

Size of immunized 
population 

Random selection Target set #1 Target set #2

1% 980 897 970

5% 890 604 880

10% 752 306 770
Page 17
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Table 1 shows the number of epidemics—that is, runs where the virus survived—that occur

both target sets across the different levels selective immunization.

The data in Table 1 shows that target set #1 (chosen based on reinfection count) cons

results in fewer epidemics than both the random immunity sets and target set #2 (chosen b

number of weighted links). In other words, the immune nodes in target set #1 were far mo

cessful in killing off all of the copies of a viral propagation than the other two strategies. Ra

immunity and target set #2 produced roughly the same results over 1,000 runs, with targe

being more effective with the smaller immune populations.

In the runs in which the virus survived, the average rate of propagation was calculated.

12 shows the average rate of propagation with 1% of the population immunized. Both targ

display a slightly better rate of propagation than the random immunization case, although

set #2 exhibits a slower rate than all others at earlier points in time.

Figures 13 and 14 show the average rate of propagation for epidemics with 5% and 10%

population selectively immunized, respectively. In both cases selective immunization perfo

significantly better than random immunization. Target set #2 again demonstrated a slower

propagation at earlier points in time, although in the 10% selective immunization experim

maintained the better rate of propagation throughout.

7.3. Analysis of immunization

These results show that by both measures of effectiveness—number of epidemics and 

rate of propagation—selective immunization performs better than random immunization. I

Figure 13: 5% selective immunity
(cluster topology, fan out of 2)

Figure 14: 10% selective immunity
(cluster topology, fan out of 5)
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ing immunity into a carefully selected set of nodes can yield a network in which more nod

likely to survive, the spread of infection is likely to be much slower, and the possibility of

demic is reduced.

Selective immunization in a hierarchic network is straightforward. The most effective str

is to immunize a set of nodes with the most number of neighbors since these nodes often

spond to root nodes of sizeable subtrees. The effect of immunizing these nodes is equiv

fragmenting the network into smaller subnets, and viral propagation is then confined to indi

subnets. Our results also showed that a strategically placed 1% immunity in a hierarchic to

is sufficient hamper or even thwart many virus attacks.

Selecting the appropriate set of nodes to immunize in the cluster topology is more cha

ing. The two target sets we selected both yielded a slower infection rate than random imm

However, there is a trade-off involved in the selection strategy’s effectiveness. Selection ba

the node reinfection rate (target set #1) consistently and significantly prevented more epid

from occurring, at the cost of a higher rate of propagation in the case of epidemics. Se

based on the number of links, giving inter-cluster links more weight (target set #2), did a far

job in slowing the rate of propagation when epidemics occurred, but was not as effective in

ping epidemics from occurring. In any case, compared to the hierarchic model, a larger 

nized population is required in the cluster topology to achieve a similar effect—a 5% imm

produced, on average, a 46% reduction in the initial infection growth, in contrast to the

reduction created by a 1% immunity in the hierarchic case.

In general, it is an encouraging result that selective immunization outperformed ra

immunization, particularly in the absence of dynamic detection and defense mechanisms.

than focusing on the size of the immunized population, better results can be achieved by c

selecting the individuals to be immunized, and then ensuring that those nodes are properly

nized.

What these simulations did not tell us is how to generalize the observations made here 

kinds of network topologies. Clearly, the underlying topology has a substantial impact o

immunization strategy. A comprehensive understanding of the role of topology and to

degree it impacts the immunization decision will be possible only when more comprehensiv

lytical models are developed to capture the essence of the underlying topology and the in

characteristics.
Page 19



 results

 random

t is still

an be

deling

of viral

o iden-

y are

y was

in the

amined

t in cer-

 signif-

s that

mains

ed.
Nevertheless, studies such as this are helpful in many ways. First, this study produced

based on which some general statements can be made about the effect of immunity, both

and selective. Even in cases where the results are intuitive and produced little surprise, i

beneficial to confirm intuitions with statistical results and to express them in numbers that c

easily compared and understood. Second, it provided a starting point where analytical mo

can use to instrument its perspectives and verify its assumptions.

8. CONCLUSIONS

In this paper we have presented the results of a simulation study on the characteristics 

propagation in computer networks. The study was carried out as part of an ongoing effort t

tify characteristics of infection that might be used to detect and treat infections while the

underway. Two network topologies were considered, and the effect of selective immunit

investigated.

As an approach to defending against viral infections, immunization is well-understood 

classical epidemiology sense. In the computational realm, however, it has not been ex

closely. We investigated immunization as a potential defense mechanism, and showed tha

tain topologies, a relatively small number of strategically placed immune nodes can have a

icant effect on viral propagation. 

The results obtained in this study only cover a small range of the possible investigation

might be conducted. Some of the conclusions drawn are preliminary and much work still re

before a comprehensive understanding of viral propagation in large networks can be obtain
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